本文目录
大数据的4v特征指的是什么
4V指的是Volume、Variety、Value、Velocity
10指的是Online
Volume(数据量大):数据量大,采集、存储和计算的量大。
Value(价值密度低):数据价值密度较低。
Velocity(速度快失效高):数据增长速度快,处理速度快,时效性高。
Online(数据在线):数据永远在线。
大数据的4v特点含义
一般认为,大数据主要具有以下四个方面的典型特征:规模性(Volume)、多样性(Varity)、高速性(Velocity)和价值性(Value),即所谓的“4V”。
1.规模性。大数据的特征首先就体现为“数量大”,存储单位从过去的GB到TB,直至PB、EB。随着信息技术的高速发展,数据开始爆发性增长。社交网络(微博、推特、脸书)、移动网络、各种智能终端等,都成为数据的来源。淘宝网近4亿的会员每天产生的商品交易数据约20TB;脸书约10亿的用户每天产生的日志数据超过300TB。迫切需要智能的算法、强大的数据处理平台和新的数据处理技术,来统计、分析、预测和实时处理如此大规模的数据。
2.多样性。广泛的数据来源,决定了大数据形式的多样性。大数据大体可分为三类:一是结构化数据,如财务系统数据、信息管理系统数据、医疗系统数据等,其特点是数据间因果关系强;二是非结构化的数据,如视频、图片、音频等,其特点是数据间没有因果关系;三是半结构化数据,如HTML文档、邮件、网页等,其特点是数据问的因果关系弱。
3.高速性。与以往的档案、广播、报纸等传统数据载体不同,大数据的交换和传播是通过互联网、云计算等方式实现的,远比传统媒介的信息交换和传播速度快捷。大数据与海量数据的重要区别,除了大数据的数据规模更大以外,大数据对处理数据的响应速度有更严格的要求。实时分析而非批量分析,数据输入、处理与丢弃立刻见效,几乎无延迟。数据的增长速度和处理速度是大数据高速性的重要体现。
4.价值性。这也是大数据的核心特征。现实世界所产生的数据中,有价值的数据所占比例很小。相比于传统的小数据,大数据最大的价值在于通过从大量不相关的各种类型的数据中,挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析,发现新规律和新知识,并运用于农业、金融、医疗等各个领域,从而最终达到改善社会治理、提高生产效率、推进科学研究的效果。
大数据的4v特征是指
大数据的4v特征分别是Volume(大量性)、Velocity(高速性)、Variety(多样性)、Value(价值性)。大数据特征的概念由维克托迈尔·舍恩伯格和肯尼斯克耶编写的《大数据时代》中提出。
截至目前,人类生产的所有印刷材料的数量是200PB,而历史上全人类总共说过得话的数据量大约是5EB。当前,典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。
Velocity(高速性):这是大数据区于传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告,预计到2020年,全球数据使用量将达到35.2ZB。在如此海量的数据面前,处理数据的效率就是企业的生命。
Variety(多样性):这种典型的多样性也让数据呗分为结构化数据和非结构化数据。相对于以往便储存的以数据库或文本为主的结构变化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等。这些多类型的数据对数据的处理能力提出了更高要求。
Value(价值性):价值密度的高低与数据总量的大小成反比。如何快速对有价值数据“提纯”成为目前大数据背景下待解决的难题。
大数据的4v特征有哪些
大数据的4V特征分别是Volume(大量性)、Velocity(高速性)、Variety(多样性)、Value(价值性)。
1、Volume(大量性),随着信息化技术的高速发展,数据开始爆发性增长。大数据中的数据不再以几个GB或几个TB为单位来衡量,而是以PB(1千个T)、EB(1百万个T)或ZB(10亿个T)为计量单位。
2、Velocity(高速性),这是大数据区分于传统数据挖掘最显著的特征。
4、Value(价值性),大数据的真实价值就像漂浮在海洋中的冰山,远看只露出一角,近看才隐约知道它的庞大。
大数据代表着数据从量到质的变化过程:
代表着数据作为一种资源在经济与社会实践中扮演越来越重要的角色,相关的技术、产业、应用、政策等环境会与之互相影响、互为促进。
从技术角度来看,这种数据规模质变后带来新的问题,即数据从静态变为动态,从简单的多维度变成巨量维度,而且其种类日益丰富,超出当前分析方法与技术能够处理的范畴。
这些数据的采集、分析、处理、存储和展现都涉及复杂的多模态高维计算过程,涉及异构媒体的统一语义描述、数据模型、大容量存储的建设,涉及多维度数据的特征关联与模拟展现。
然而,大数据发展的最终目标还是挖掘其应用价值,没有价值或者没有发现其价值的大数据从某种意义上讲是一种冗余和负担。
以上就是关于大数据4v是什么意思,大数据的4v特征指的是什么的全部内容,以及大数据4v是什么意思的相关内容,希望能够帮到您。
版权声明:本文来自用户投稿,不代表【蒲公英】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:350149276@qq.com)我们将及时处理,共同维护良好的网络创作环境。